

Max Marks: 60

Date: 13.08.2022

ABHIMANYU BATCH CHEMISTRY: DCT Topic: Boron + Carbon + Solutions

1. Consider the following boron halides											
	1.	BF ₃	2.	BCl ₃	3.	BBr ₃	4.	BI ₃			
	The I	Lewis acid characters	of these	e halides are such th	nat						
	(a)	1 < 2 < 3 < 4	(b)	1 < 3 < 2 < 4	(c)	4 < 3 < 2 < 1	(d)	4 < 2 < 3 < 1			
2.	H ₃ BC	D_3 and HBO ₂ do not d	liffer in								
	(a)	oxidation number	(b)	basicity	(c)	melting point	(d)	structure			
3.	Ther	Thermite welding uses Al because of									
	(a)	its low melting po	int		(b)	its lightness					
	(c) its greater affinity for oxygen					All the properties given above					
4.	Whic	h of the following sta	atement	s about H_3BO_3 is n	ot correct	•					
	(a)	It is strong tribasion	c acid								
	(b)	It is prepared by a	cidifyin	ig an aqueous soluti	on of bora	ax.					
	(c)	•		-	-	oined by hydrogen b	onds.				
	(d)	(d) It does not act as a Lewis acid by accepting hydroxyl ion									
5.	Reac	tivity of borazole is g	reater tl	han that of benzene	because						
	(a)	borazole is polar o	compou	nd	(b)	borazole is non-polar compound					
	(c)	borazole is electro	on defici	ient compound	(d)	of localized electrons in it					
6.	Dry i	ce is									
	(a)	$H_2O(s)$	(b)	$NH_3(g)$	(c)	$CO_2(s)$	(d)	$PH_3(g)$			
7.	Out of CO ₂ , SiO ₂ GeO ₂ , SnO ₂ and PbO ₂										
	(a)	(a) CO_2 and SiO_2 are acidic, SnO_2 is amphoteric and PbO_2 is an oxidizing agent.									
	(b)	(b) PbO_2 is converted to $Pb(NO_3)_2$ on reaction with HNO_3									
	(c)	c) Both (a) and (b) are correct									
	(d)	None of the above	e is corr	ect							
				Space for R	ough Wo	ork					

8. Which is/are true statements? Diamond is unaffected by conc acids but graphite reacts with hot conc. HNO₃ forming (a) mellitic acid. C₆(COOH)₆ (b) CO is toxic because it forms a complex with hemoglobin in the blood. C_3O_2 , carbon suboxide, is a foul-smelling gas (c) (d) All the above are true statements. 9. Gas that strikes in thundering of light is (a) CO (b) NO (c) CO_2 (d) H_2 10. White lead is (a) PbSO₄, PbO (b) PbCO₃, PbO (c) PbCO₃ (d) Pb(OH)₂, PbCO₃ 11. The order of boiling points of four equimolar aqueous solutions is C < B < A < D. The correct order of their freezing points is D < C < B < AD > C < B < AD < B > A < C(d) D > A > B > C(a) (b) (c) 12. Which of the following pair of solutions are expected to isotonic at the same temperature? 0.2 M urea and 0.2 M NaCl 0.1 M urea and 0.2 M MgCl₂ (a) (b) 0.1 M NaCl and 0.1 M Na₂SO₄ (d) 0.1 M Ca(NO₃)₂ and 0.1 M Na₂SO₄ (c) 13. In countries nearer to polar region, the roads are sprinkled with CaCl₂. This is to minimize the snow fall to minimize pollution (a) (b) to minimize the wear and tear of the roads. (c) to minimize the accumulation of dust on the road (d) 14. 1 mole each of the following solutes are taken in 5 moles water, B. NaCl K_2SO_4 C. Na₃PO₄ D. glucose A. Assuming 100% ionisation of the electrolyte, relative decreases in vapour pressure will be in the order A < B < C < D(b) D < C < B < AD < A < B < C(d) equal (a) (c) 15. Osmosis results from an increase in entropy a decrease in entropy (a) (b) a decrease in internal energy (c) a decrease in enthalpy (d) * * * * *

Space for Rough Work

Max Marks: 60

Date: 13.08.2022

ABHIMANYU BATCH MATHEMATICS : DCT Topic: Rolle's Theorem, Mean Value Theorem

16.	If the function $f(x) = x^3 - 6x^2 + ax + b$ defined on [1, 3] satisfies the Rolle's Theorem for $c = \frac{2\sqrt{3} + 1}{\sqrt{3}}$, then								
	(a)	$a = 11, b \in R$	(b)	a = -11, b = 6	(c)	a = 11, b = 6	(d)	none of these	
17.	Which	n condition of Rolle	's Theor	em is not satisfied the	e functio	on $f(x) = [x]$, where x	∈[−1,1]	?	
	(a)	f(x) is not derivab	ole at x =	= 1	(b)	f(x) is not derivabl	e at $x = -$	-1	
	(c)	f(x) is not continu	ious at x	x = 0	(d)	none of these			
18.	If f is	differentiable for al	l x and f	$f(1) = -2$ while $f'(x) \ge -2$	≥ 2 for a	ll $x \in [1, 6]$, then			
	(a)	f(6) < 8	(b)	$f(6) \ge 8$	(c)	$f(6) \ge 5$	(d)	$f(6) \le (5)$	
19.	If a, I	b are two distinct	zeroes o	of a polynomial f(x),	, then th	nere is at least one	zero bet	ween a and b of the	
	polyn	omial							
	(a)	f(x)	(b)	f'(x)	(c)	f''(x)	(d)	none of these	
20.	If, fro	m mean value theor	em, f(x	f(b) - f(a), then b - a, then					
	(a)	$a \! < \! x_1 \! \le \! b$	(b)	$a{\leq}x_1{<}b$	(c)	$a < x_1 < b$	(d)	$a{\leq}x_1{\leq}b$	
21.	Let f(a) and g(x) be defin	ed and g	g(x) be defined and d	ifferentia	able for $x \ge x_0$. If $f(x)$	o), and f	f(x) > g'(x) for all $x >$	
	x_0 , the	en							
	(a)	f(x) < g(x) for some	me $x > x$	0	(b)	f(x) = g(x) for som	$e x > x_0$		
	(c)	f(x) > g(x) for all	$x > x_0$		(d)	none of these			

Space for Rough Work

Learning with the Speed of Mumbai and the Tradition of Kota

22.	For w (a)	hich of the followin $f(x) = 3 + (x - 1)^2$	•	on is Rolle's Theorer	n not ap (b)	-	1.11				
	(c)	$f(x) = \log(x^2 + 2)$	_	-	. ,	$f(x) = \sqrt{4 - x^2}$ on [-2, 2]					
			U								
23.				function $f(x) = x^3 + bx$		-					
	(a)	b = 8, c = -5	(D)	b = -5, c = 8	(C)	a = -2/3, b = 1	(d)	a = 2/3, b = 1			
24.	For w		-	ons is Rolle's Theore	m not aj	pplicable?					
	(a)	$f(x) = x^{1/3}$ on $[-1,$	1]		(b)						
(c) $f(x) = \tan^{-1}x$ on [0, 1]					(d)	$f(x) = x + \frac{1}{x}$ on [1/2,3]				
25.	Whicl	n condition of Rolle	's Theor	rem is not satisfied fo	r the fur	function $f(x) = x $ on $[-$	1,1]?				
	(a)	f(x) is not different	ntiable a	at $\mathbf{x} = 1$	(b)	f(x) is not continu	ous at x =	= -1			
(c) $f(x)$ is not continuous at $x = 0$					(d)	f(x) is not different	tiable at	$\mathbf{x} = 0$			
26.	If 2a -	a + 3b + 6c = 0, then at least one root of the equation				on $ax^2 + bx + c = 0$ lies in the interval					
	(a)	(0, 1)	(b)	(1, 2)	(c)	(2, 3)	(d)	none of these			
27.	a a a a -1				the func	$ction f(x) = a_0 x^n + a_1 x^n$	$x^{n-1} + a_2 x^n$	$a^{n-2} + \ldots + a_n$ has			
	(a)	at least one zero	(b)	at most one zero	(c)	only 3 zeroes	(d)	only 2 zeroes			
28.	If f(x)	=(x-4)(x-5)(x	-6)(x)	– 7), then							
	(a)	f'(x) = 0 has 4 roo		. ,,	(b)	f'(x) has 3 zeroes	in (4, 5)	\cup (5, 6) \cup (6, 7)			
	(c)	f'(x) = 0 has only	one roo	ot	(d)	$f'(x)$ has 3 zeroes in (3, 4) \cup (4, 5) \cup (5, 6)					
29.	The e	quation $3x^2 + 4ax +$	b = 0 hat	as at least one root in	(0, 1) if						
	(a)	4a + b + 3 = 0	(b)	2a + b + 1 = 0	(c)	a = -4/3, b = 0	(d)	none of these			
30.	If f(x)	=(x-1)(x-2)(x	– 3) on	[0, 4], then the value	e of 'c' by Mean Value Theorem is						
	(a)	$2 + (\sqrt{3}/2)$	(b)	$3\pm(2/\sqrt{3})$	(c)	$2\pm(2/\sqrt{3})$	(d)	none of these			
				Space for Ro	ugh Wo	ork					

Max Marks: 60

Date: 13.08.2022

ABHIMANYU BATCH CHEMISTRY: DCT ANSWER KEY Topic: Boron + Carbon + Solutions

1.	(c)	2.	(a)	3.	(c)	4.	(a)	5.	(d)
6.	(c)	7.	(c)	8.	(d)	9.	(b)	10.	(d)
11.	(c)	12.	(d)	13.	(a)	14.	(c)	15.	(b)

Max Marks: 60

Date: 13.08.2022

ABHIMANYU BATCH MATHEMATICS : DCT ANSWER KEY Topic: Rolle's Theorem, Mean Value Theorem

16.	(a)	17.	(c)	18.	(b)	19.	(b)	20.	(c)
21.	(c)	22.	(a)	23.	(b)	24.	(a)	25.	(d)
26.	(a)	27.	(a)	28.	(b)	29.	(b)	30.	(c)